Phase separation
- Condensate size control by charge asymmetry. Chengjie Luo*, Nathaniel Hess*, Dilimulati Aierken, Yicheng Qiang, Jerelle A. Joseph, and David Zwicker. submitted (2024)
- Scaling of phase count in multicomponent liquids. Yicheng Qiang, Chengjie Luo, and David Zwicker. submitted (2024)
- Beyond pairwise: Higher-order physical interactions affect phase separation in multi-component liquids. Chengjie Luo, Yicheng Qiang, and David Zwicker. Physical Review Research 6, 033002 (2024)
- Nonlocal elasticity yields equilibrium patterns in phase separating systems. Yicheng Qiang, Chengjie Luo, and David Zwicker. Physical Review X 14, 021009 (2024)
- Influence of physical interactions on spatiotemporal patterns. Chengjie Luo and David Zwicker. Physical Review E, 108, 034206 (2023)
- Physical interactions promote Turing patterns. Lucas Menou*, Chengjie Luo*, and David Zwicker. Journal of the Royal Society Interface, 20, 20230244 (2023)
Glass
- Classifying the age of a glass based on structural properties: A machine learning approach. Giulia Janzen, Casper Smit, Samantha Visbeek, Vincent E. Debets, Chengjie Luo, Cornelis Storm, Simone Ciarella, and Liesbeth M. C. Janssen. Physical Review Materials 8, 025602 (2024)
- Dead or alive: Distinguishing active from passive particles using supervised learning. Giulia Janzen, Xander L. J. A. Smeets, Vincent E. Debets, Chengjie Luo, Cornelis Storm, Liesbeth M. C. Janssen, and Simone Ciarella. EPL, 143, 17004 (2023)
- Emergent structural correlations in dense liquids. Ilian Pihlajamaa, Corentin C L Laudicina, Chengjie Luo, Liesbeth M C Janssen. PNAS Nexus, 2, pgad184 (2023)
- Effects of size ratio on particle packing in binary glasses. Huijun Zhang, Chengjie Luo, Zhongyu Zheng, and Yilong Han. Acta Materialia, 246, 118700 (2023)
- Dynamical susceptibilities near ideal glass transitions. Corentin C. L. Laudicina, Chengjie Luo, Kunimasa Miyazaki, and Liesbeth M. C. Janssen. Physical Review E, 106, 064136 (2022)
- Many-body correlations are non-negligible in both fragile and strong glassformers. Chengjie Luo, Joshua F. Robinson, Ilian Pihlajamaa, Vincent E. Debets, C. Patrick Royall, Liesbeth M. C. Janssen. Physical Review Letters, 129, 145501 (2022)
- Generalized mode-coupling theory for mixtures of Brownian particles. Vincent E. Debets, Chengjie Luo, Simone Ciarella, and Liesbeth M. C. Janssen. Physical Review E, 104, 065302 (2021)
- Glassy dynamics of sticky hard spheres beyond the mode-coupling regime. Chengjie Luo and Liesbeth M. C. Janssen. Soft Matter, 17, 7645 (2021) [highlighted on the cover]
- Tagged-particle motion of Percus–Yevick hard spheres from first principles. Chengjie Luo, Vincent E. Debets, and Liesbeth M. C. Janssen. The Journal of Chemical Physics, 155, 034502 (2021)
- Multi-component generalized mode-coupling theory: predicting dynamics from structure in glassy mixtures. Simone Ciarella*, Chengjie Luo*, Vincent E. Debets*, and Liesbeth M. C. Janssen. The European Physical Journal E, 44, 91 (2021)
- Generalized mode-coupling theory of the glass transition. II. Analytical scaling laws. Chengjie Luo and Liesbeth M. C. Janssen. The Journal of Chemical Physics, 153, 214506 (2020)
- Generalized mode-coupling theory of the glass transition. I. Numerical results for Percus–Yevick hard spheres. Chengjie Luo and Liesbeth M. C. Janssen. The Journal of Chemical Physics, 153, 214507 (2020)
- Glassy dynamics of a binary Voronoi fluid: a mode-coupling analysis. Céline Ruscher, Simone Ciarella*, Chengjie Luo*, Liesbeth M. C. Janssen, Jean Farago, and Jörg Baschnagel. Journal of Physics: Condensed Matter, 33, 064001 (2020)
Protein motion
- Directed motion of membrane proteins under an entropy-driven potential field generated by anchored proteins. Yusheng Shen, Chengjie Luo, Yan Wen, Wei He, Pingbo Huang, Hsuan-Yi Chen, Pik-Yin Lai, and Penger Tong. Physical Review Research, 3, 043195 (2021)
Thesis
- PhD thesis: A First-Principles Theory of the Complex Dynamics of Glass-Forming Liquids: A Generalized Mode-Coupling Theory
- Master thesis: Analysis of the potential landscapes of colloidal diffusion systems using the Markov state model
*contributed equally